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A B S T R A C T   

Quantifying the economic risk associated with a solar power project is essential in order to secure financing. 
Quantitative risk assessment is often conducted by rerunning a model to calculate economic viability measures, 
including Internal Rate of Return (IRR) and Levelized Cost of Electricity (LCOE), for ranges of values of uncertain 
input parameters that determine capital cost, operating cost, energy yield and revenue. This paper provides an 
analytical approach that avoids this repetitive recalculation. The analytical approach is based on differentiating 
the economic viability measures with respect to the input parameters of interest. Using 20% changes in 
parameter values, the analytical approach is shown to agree within 0.875% for a behind-the-meter project. For 
an off-grid utility scale project the analytical approach is exact for five cost and energy yield parameters and 
agrees within 0.01% for degradation rate and 0.14% for discount rate. Moreover, the analytical approach is 
extended to provide differential importance measures that indicate which parameters are contributing most/least 
to the riskiness of the project. Results indicate that the ranking of parameters is identical for IRR and LCOE 
despite these being very different measures of economic viability, thus further supporting the analytical method 
provided in this paper.   

1. Introduction 

In order to attract investment to a solar project, risk assessment is 
essential, and there are many standards for mitigating and assessing risk, 
from the IEC system for renewable energy certification [1], which covers 
engineering aspects, through green/climate bonds certified by organi-
zations such as the Climate Bonds Initiative [2], and Sustainalytics [3], 
to the rating of financial instruments by rating agencies such as Moodys 
[4], which covers business aspects. Equipment warranties and surety 
bonds can be used to reduce the risk of individual solar projects, and 
multiple projects can be securitized into a financial instrument suited to 
the needs of institutional investors. 

Assessing the risks involved in individual solar projects is the basis of 
this standardization, certification and rating, and includes both quali-
tative and quantitative factors. Qualitative factors include equipment 
reliability, the quality of equipment warranties, and the possibility of 
future changes in electricity demand and government regulations. This 
paper focuses on quantitative factors including, solar and battery capital 
and operating costs, solar module degradation rate, trends in electricity 
prices and the discount rate. 

Economic viability of solar projects is measured by Net Present Value 

(NPV), Internal Rate of Return (IRR) and Levelized Cost of Electricity 
(LCOE) and conventional risk assessment estimates the change in these 
measures due to variations in input parameters. For instance Ref. [5], 
calculates the change in IRR due to ±30% variation in system cost [6], 
gives the change in LCOE due to ±10% variation in systems cost and 
operating cost [7], assesses the change in IRR due to the timing of 
government incentives [8], estimates the change in IRR due to a 20% 
change in operations costs [9], estimates the change in LCOE due to a 
20% change in operations costs, and [10] calculates the change in NPV 
due to ±30% variations in capital cost and discount rate. The impact of 
these changes in input parameters is obtained by rerunning the model 
for the corresponding range of parameter values. 

There is also uncertainty due to the variability in the solar resource 
itself, and work in this area has quantified the probabilities of exceeding 
certain annual irradiance levels, see for example [11]. However, a 
Monte Carlo analysis in Ref. [12] has shown that the impact of variations 
in irradiance levels on IRR is negligible: a 13.8% coefficient of variation 
(CoV) in solar irradiance results in only 0.7% CoV in IRR. Although solar 
irradiance is variable, over the 25–32 year life of a solar project the 
variations almost cancel each other out, with minimal impact on IRR. In 
this paper, we do not therefore deal with risk due to variability in 
irradiance. 
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Risk assessment is important in attracting investors, and in particular 
institutional investors, who will invest on the order of $100m in solar 
projects bundled into tradable securities, [13,14]. A second benefit is 
that once the risk is quantified, it becomes insurable, [15,16]. However 
[17], states that “models for investment in the power sector rarely 
provide an explicit treatment of risk. Often it is assumed that, given a 
hurdle discount rate for the cost of capital, NPV positive investments will 
happen; sometimes the hurdle rates are increased for project risk, but 
these tend to be ad hoc suggestions.” 

In the past, many solar projects operated under feed-in tariffs which 
guaranteed a price for electricity over the life of the project. With the 
phasing out of feed-in tariffs in many jurisdictions, uncertainty about 
trends in electricity prices constitutes an additional source of risk. Thus, 
risk assessment today is even more important than it was in the past. 

This paper provides an analytical approach to quantitative risk 
assessment for solar power projects. Instead of rerunning the model to 
calculate NPV, IRR or LCOE repeatedly for varying values of input pa-
rameters as in Ref. [5–10], we derive analytical results that can be used 
instead. The paper validates this approach using empirical data from a 
behind-the-meter project in Section 2, and a utility scale project in 
Section 3. Sections 4 and 5 provide discussion of the results and 
conclusions. 

2. Risk assessment for behind-the-meter solar projects 

We first deal with behind-the-meter (BTM) projects in which solar 
power is generated on the site of an electricity customer; some of the 
electricity generated is used by that customer and the rest is fed into the 
grid. In many jurisdictions, BTM projects can use net metering under 
which the customer receives a credit on their electricity bill for power 
fed into the grid so long as over the course of a year the net consumption 
of power from the grid is positive. The financial analysis for BTM pro-
jects is based on the savings to the customer obtained from the reduction 
in their electricity bill. The financial analysis of off-grid projects is based 
on the cost of electricity generation and will be dealt with in Section 3. 

The financial analysis of BTM projects can be based on NPV for which 
we need to know the discount rate. Alternatively, it can be based on IRR 
which is the discount rate at which NPV = 0. Each customer has their 
own discount rate, resulting in different NPVs, and therefore our anal-
ysis uses IRR so as to be generally applicable. 

We consider the case of a commercial customer subject to (i) elec-
tricity charges per kWh of electricity consumed and (ii) demand charges 
based on the usage (in kWh) during the peak hour each month. The 
annual savings from using BTM solar in year zero is: 

S0 = SE
0 + SD

0 (1)  

where SE
0 are the savings from reduced electricity charges and SD

0 are the 
savings from reduced demand charges. These savings are obtained by 
running an optimization model to determine the optimal battery size 
and the optimum schedule of power flow into and out of the battery, e.g. 
Ref. [18,19]. 

In year t, the savings are: 

St = S0(1 + e)t
(1 − d)t (2)  

where e is the rate of increase of future electricity prices and d is the 
degradation rate of the solar modules. A major source of risk in solar 
projects is assumptions about future electricity prices. Although these 
can be estimated by extrapolating past trends, they are subject to 
considerable uncertainty due to both political and business factors. The 
degradation rate of solar modules is also uncertain, as recent estimates 
[20,21], differ from each other and are based on field measurements 
over periods of time shorter than the warranted life of today’s solar 
modules of 32 years. 

The outgoing cash flows consist of capital and operating costs. The 
capital costs are incurred in year zero and include the cost of the battery 
and solar installation O0 = C. The operating costs Ot in year t are 
composed of the annual maintenance of the system (OM each year), 
inverter and battery cell replacement (OI in year 15) and end of life 
recycling costs (OR in the final year, T, of the project). The capital and 
operating costs in year t are: 

Ot = O0 + OM + OI + OR (3) 

In equation (3), OM is present for all years, t, and O0, OI and OR are 
only present when t = 0, 15 and T respectively. A more precise, but 
notationally more complex way of representing (3) is: 

Ot = O0δ0,t + OM + OIδ15,t + ORδT,t (3′)

where. δi,j = 1 when i = j, and  δi,j = 0 when i ∕= j.
The IRR for the project can then be calculated as the discount rate at 

which the Net Present Value is equal to zero: 

NPV =
∑T

t=0

St − Ot

(1 + IRR)t = 0 (4) 

In this paper, we quantify the risk of a BTM solar project as the 
change in the IRR resulting from a change in the input parameters. 
Instead of rerunning the model repeatedly for a range of parameter 
values, we estimate changes in IRR from the derivative of IRR with 
respect to each parameter, xi ∈ {e, d, SE

0, SD
0 ,O0,OM,OI,OR} as given in 

Table 1. These results are obtained by implicit differentiation of (4) 
using (1-3). 

The change in IRR as a result of a change in a parameter xi is esti-
mated using the first order approximation: 

Abbreviations 

BTM Behind-the-Meter 
DIM Differential Importance Measure 
IRR Internal Rate of Return (%) 
LCOE Levelized Cost of Electricity ($/kWh) 
NPV Net Present Value ($) 
O&M Operations and Maintenance 
SAM System Advisor Model  

Table 1 
Derivatives of IRR with respect to each of its eight parameters.  

i xi ∂IRR
∂xi  

1 e ∑T
t=0 t(SE

0 + SD
0 )(1 + e)t− 1

(1 − d)t(1 + IRR)− t

∑T
t=0 t(St − Ot)[1  +  IRR]− t− 1    

2 d ∑T
t=0 t(SE

0 + SD
0 )(1 + e)t

(1 − d)t− 1
(1 + IRR)− t

∑T
t=0 t(St − Ot)[1  +  IRR]− t− 1    

3 SE
0  

∑T
t=0(1 + e)t

(1 − d)t(1 + IRR)− t

∑T
t=0 t(St − Ot)[1  +  IRR]− t− 1    

4 SD
0  

∑T
t=0(1 + e)t

(1 − d)t(1 + IRR)− t

∑T
t=0 t(St − Ot)[1  +  IRR]− t− 1    

5 OI 
− (1 + IRR)− 15

∑T
t=0 t(St − Ot)[1  +  IRR]− t− 1    

6 OR 
− (1 + IRR)− 32

∑T
t=0 t(St − Ot)[1  +  IRR]− t− 1    

7 OM ∑T
t=0(1 + IRR)− t

∑T
t=0 t(St − Ot)[1  +  IRR]− t− 1    

8 O0  − 1
∑T

t=0 t(St − Ot)[1  +  IRR]− t− 1     
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δIRR =
∂IRR
∂xi

δxi (5)  

where δ represents an incremental change in IRR or in one of the vari-
ables xi, i = 1,…, 8 given in Table 1. The change in IRR, δIRR, as a result 
of a change in a parameter, δxi , is a measure of the risk associated with 
the uncertainty in the estimation of that parameter, xi. 

2.1. Validation 

In the early stages of planning a solar project there is considerable 
uncertainty in the parameter values and this uncertainty declines as 
planning progresses. We therefore validate the analytical approach 
using ±20% changes in the parameter values as being representative of 
an intermediate stage in this process. Taking an actual BTM solar project 
[18], as an example, we now compare the change in IRR calculated from 
(5) with the change in IRR obtained from rerunning the model. The 
numerical values of the parameters and the impact of a 20% change in 
value on the IRR are given in Table 2. The derivatives of IRR given by the 
equations in Table 1 and the parameters in Table 2 are:   

The largest discrepancy between the analytical approach and 
rerunning the model is for the capital cost, O0. However, this applies 
only at the early stages of project planning. Once contracts are signed for 
equipment and installation, the capital cost is known and no longer 
contributes to risk. For the other parameters in Table 2, we first calculate 
the proportional differences between the analytical approach and re- 
running the model (e.g. for the parameter e: 0.006664/0.006721 – 1) 
for the first 7 parameters. The average absolute value of these propor-
tional differences is 0.875%. It can be seen that there is very good 
agreement between (5) and rerunning the model, thus validating the 
analytical approach consisting of (5) and the derivatives in Table 1. 

2.2. Differential importance measure 

The estimation of risk from (5) is the first application of differenti-
ating IRR with respect to the parameters determining the economic 
viability of a solar project. We refer to the second application as the 
differential importance measure (DIM), which was introduced in 
Ref. [22] and applied to discounted cash flow analysis in Ref. [23]. In 
terms of our example in Section 2.1, DIM measures the risk, in terms of a 
change in IRR, due to a change in one of the parameters listed in Table 1 
compared to the change in IRR due to a simultaneous change in all 
parameters. It can be used to rank parameters from those causing more 
risk to those causing less risk. 

To define DIM in general, consider a function f(x) differentiable at 
x0 = (x0

1,x0
2,…,x0

n). The DIM for the parameter xi is defined as: 

DIMi
(
x0, δx

)
=

fi(x0)  δxi∑n
j=1fj(x0)  δxj

(6)  

where fi(x0) is the partial derivative of f with respect to xi at its base 
value x0, and δxi represents a change in xi, similar to that in (5). 
DIMi(x0, δx) measures the importance of each individual parameter xi as 
the change in f due to a change of magnitude δxi in xi as a proportion of 
the change in f due to simultaneous changes δxj in all the parameters xj. 

From this definition, it can be seen that DIM is additive, [22]. The 
risk due to changes in a subset of parameters is obtained by adding the 
DIMs for the individual parameters. 

If all the δxi are equal to each other, (6) simplifies, but in our case, the 
parameters (listed in Table 1) have different units and are of very 
different orders of magnitude, so we work in terms of proportional 
changes. We adapt DIM to measure the parameter importance when the 
parameters are changed by the same proportion of their nominal value: 
δxj/x0

j = δxi/x0
i ∀j, in which case DIM becomes: 

DIMi
(
x0)=

fi(x0)x0
i∑n

j=1fj(x0)x0
j

(7) 

In this case, DIMs(x0) is directly linked to the elasticity of the function 
f with respect to xi: 

Ei
(
x0)=

fi(x0)x0
i

f (x0)
(8)  

with: 

DIMi
(
x0)=

Ei(x0)
∑n

j=1Ej(x0)
(9)  

DIMi(x0) is equivalent to the ratio of the elasticity of f with respect to xi 
divided by the sum of the elasticities with respect to all parameters. 

We now take f(x0) to be IRR(e, d, SE
0, SD

0 ,O0,OM,OI,OR) given 
implicitly by (4). We calculate the DIM with respect to its parameters 
using (7) or (9) with the partial derivatives given in Table 1. The results 
are given in Table 3, together with a ranking indicating how sensitive 
IRR is to the same proportional change in each of its parameters. An 
advantage of using DIM is that, whereas the changes in IRR given in 
Table 2 were for a specific proportional change in parameter values 
(20%), the DIM values in Table 3 apply to any proportional change in 
parameter values, so long as it is the same proportion for each 
parameter. 

The additivity property of DIM noted above allows it to be used to 
assess the importance of subsets of parameters, e.g. total savings: SE + SD 

or total operating costs: OI + OR + OM. The DIM for these combinations 
of parameters can be obtained by adding the individual DIMs. Thus, the 
DIM for total savings is 3.65 (higher than the DIM for capital costs) and 
the DIM for total operating costs is − 0.48. 

∂IRR
∂O0

= − 4.635e − 07;
∂IRR
∂OM = − 6.668e − 06;

∂IRR
∂OI = − 1.812e − 07;

∂IRR
∂OR = − 6.248e − 08  

∂IRR
∂e

= 1.1989;
∂IRR

∂d
= − 1.2384;

∂IRR
∂SE = 8.639e − 06;

∂IRR
∂SD = 8.639e − 06   
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It is important to note that the ranking in Table 3 applies to any 
proportional change in parameters, but only when the proportional 
change is the same for all parameters. In practice, the proportional 
changes in parameters for a solar project may not be the same, and 
depend on the individual project. For instance the capital cost, O0 has 
the highest DIM in Table 3 and is indeed very uncertain at the planning 
stage. However, once a contract has been signed for the supply and 
installation of the solar modules and battery, this cost is known and no 
longer contributes to the risk of the project. Assessing realistic ranges of 
uncertainty of individual parameters is not straightforward. For 
instance, operations and maintenance (O&M) costs have been discussed 
recently in Ref. [24], and we note that much O&M data is dated since it 
needs to be collected over several years. The conclusion in Ref. [24] is 
that 0.5% of capital costs is a realistic estimate of annual O&M costs for 
large systems and 1% is realistic for small systems, similar to our figure 
of 0.86% = OM/O0. However [24], does not suggest a range repre-
senting the uncertainty in these figures. 

A practitioner, dealing with a specific project, and having their own 
estimates of ranges of uncertainty for individual parameters, may prefer 
to use those ranges in (6). Equations (7) and (9) and the ranking in 
Table 3 are suitable when ranges of uncertainty in individual parameters 
are not known and when it is reasonable to investigate, instead, the 
effect of the same proportional change in each parameter. 

3. Risk assessment for utility scale and off-grid solar projects 

The IRR is a natural measure of the economic viability of behind-the- 
meter solar projects, since it weighs the capital and operating costs 
against the financial savings from the project. In the case of utility scale 
projects and off-grid projects, the utility and the off-grid user are more 
interested in the lowest cost source for electricity generation, and the 
issue of savings or revenues to offset those costs does not arise. In these 

cases, the measure adopted in the industry to evaluate cost is the LCOE2 

given by the sum of discounted costs over the lifetime of the project 
divided by the sum of the discounted electrical energy produced over the 
lifetime: 

LCOE =

∑T
t=0

Ot
(1+r)t

∑T
t=0

Et
(1+r)t

=

∑T
t=0

Ot
(1+r)t

∑T
t=0

E0(1− d)t

(1+r)t

=

∑T
t=0

Ot
(1+r)t

E0
∑T

t=0kt
=

1 − k
E0

(
1 − kT+1

)
∑T

t=0

Ot

(1 + r)t

(10)  

where r is the discount rate, d is the degradation rate of the solar 
modules, Ot is the operation cost equation in (3), E0 is the electricity 
produced in year zero and the electricity produced in year t is: 

Et =E0(1 − d)t (11)  

and 

k=
1 − d
1 + r

(12) 

Using (3), the derivatives of LCOE with respect to its parameters are 
given in Table 4: 

From (10), LCOE is linear in Ot so that, when its first derivative, (16), 
is used in (5) we obtain an exact estimate of the sensitivity of LCOE to 
changes in Ot . However (13), (14) and (15) provide only first order 
approximations, since LCOE is non-linear in the corresponding param-
eters. We now assess the accuracy of these approximations. 

3.1. Validation 

We assess the accuracy of the analytical approach to risk assessment 
for LCOE, using an example of an off-grid solar project in Yanbu, Saudi 
Arabia modeled using the commercial software package, HOMER [25], 
as reported in Ref. [26]. The parameters relevant to the risk analysis are 
given in Table 5 and a complete parameter listing is given in Refs. [26]. 
This project has a shorter time horizon (25 years) than the project used 
in Section 2.1 and the inverter and battery cell replacement is done in 
year 14. 

Using the parameters in Table 5, the derivatives of LCOE given by 
(13) – (16) are: 

Table 2 
Impact on IRR of a ±20% change in parameter base values, giving the results of the analytical approach, re-running the model and the proportional difference between 
these alternative approaches.  

Parameter Base value Minus 20% Plus 20% 

Analytical 
Approach 

Re-running the 
model 

Proportional 
Difference 

Analytical 
Approach 

Re-running the 
model 

Proportional 
Difference 

e 2.78% 0.006664 0.006721 0.839% − 0.006664 − 0.006614 0.758% 
d 0.50% − 0.001238 − 0.001237 0.144% 0.001238 0.001240 0.147% 
SE  $9,046.69 0.015630 0.016288 4.037% − 0.015630 − 0.015150 3.170% 

SD  $2,404.82 0.004155 0.004196 0.978% − 0.004155 − 0.004117 0.917% 

OI $9,406.04 − 0.000341 − 0.000340 0.151% 0.000341 0.000341 0.151% 
OR $14,082.00 − 0.000176 − 0.000175 0.346% 0.000176 0.000177 0.348% 
OM $1,597.76 − 0.002131 − 0.002128 0.126% 0.002131 0.002134 0.136% 
O0  $184,884.19 − 0.017137 − 0.020575 16.707% 0.017137 0.014814 15.687% 
IRR 6.46%        

Table 3 
Differential importance measure indicating the sensitivity of IRR to the same 
proportional change in each of its parameters.  

Parameters xi  Base value x0
i  Differential importance measure 

DIMIRR
i (x0)

Rank 

e 2.78% 1.23 3 
d 0.5% − 0.23 6 
SE  $9,046.69 2.88 2 

SD  $2,404.82 0.77 4 

OI $9,406.04 − 0.06 7 
OR $14,082.00 − 0.03 8 
OM $1,597.76 − 0.39 5 
O0  $184,884.19 − 3.16 1  

2 The profitability of utility scale solar projects developed by an independent 
electricity generator and paid by the utility under a Power Purchasing Agree-
ment (PPA) would be evaluated using IRR since, in this case, there is a revenue 
stream against which to offset the costs, see Section 2. 
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∂LCOE
∂O0

= 0.004311;
∂LCOE

∂OM = 0.05033;
∂LCOE

∂OI = 0.001468;
∂LCOE

∂OR

= 0.0006295;
(17a)  

∂LCOE
∂d

= 0.9764;
∂LCOE

∂r
= 0.7595;

∂LCOE
∂E0

= − 0.005664 (17b) 

A comparison of risk assessment using our analytical approach with 
the results of re-running the model are given in Table 6 for 20% changes 
in the corresponding parameters. It can be seen that the results of the 
analytical approach are almost identical to those obtained by re-running 
the model. As noted above, the derivatives of LCOE with respect to Ot 

give exact results when used in (5), since LCOE is linear in Ot. 
Table 6 shows a slight discrepancy in ∂LCOE/∂E0 when it is estimated 

from (15), since LCOE involves the inverse of E0. If we use the analytical 
approach to estimate 1/LCOE, instead of estimating LCOE itself, then the 
dependence on E0 becomes linear so that the analytical approach yields 
an exact result: 

1
LCOE

=
E0

(
1 − kT+1)

(1 − k)
∑T

t=0

Ot

(1 + r)t

∂
∂E0

1
LCOE

=

(
1 − kT+1)

(1 − k)
∑T

t=0

Ot

(1 + r)t

(18) 

These results demonstrate that the analytical approach to risk 
assessment yields exact results for changes in LCOE corresponding to 
changes in capital costs, operating costs and the electricity generated in 
the base year. For 20% changes in the degradation rate, d, the analytical 
approach is 0.01% different from the result of re-running the model. For 
20% changes in the discount rate, r, the analytical approach is 0.088%– 
0.144% different from the result of re-running the model. In summary, 
the analytical approach based on first derivatives gives very accurate 
results and avoids the necessity of re-running the model multiple times. 

3.2. Differential importance measure 

We calculate the DIM for LCOE(O0,OM,OI,OR, d, r, E0) with respect 
to its parameters using (7) or (9) with the partial derivatives given in 
(17). The results are given in Table 7, together with a ranking indicating 
how sensitive IRR is to the same proportional change in each of its 
parameters. 

The ranking of parameters for LCOE in Table 7 is similar to that for 
IRR in Table 3. The only difference is the parameters ranked first and 
second. The BTM project in Table 3 has two sources of dollar savings: 
electricity charges and demand charges, which contribute to the IRR, 
whereas the LCOE analysis in Table 7 is based on the amount of elec-
tricity generated, E0. When the DIMs for the two sources of savings in 
Table 3 are totaled (using the additivity property of DIM) then the 
ranking of parameter importance for IRR and LCOE becomes identical. 

As with Table 3, we note that the ranking in Table 7 applies to any 
proportional change in parameters, but only if the proportional change 
is the same for each parameter. An analyst assessing the risk of a specific 
solar project may have their own ranges of uncertainty for each 

Table 5 
Parameters for an off-grid solar/battery project in Yanbu, Saudi Arabia.  

Parameter Units Value 

PV capacity kW 17075 
PV electricity (annual) in year 0, (E0) Million kWh per 

year 
21.144 

PV capital cost $m 13.6 
Battery capital cost $m 8.49 
Inverter capital cost $m 2.06 
Total capital cost, (O0) $m 24.15 

Operating costs (annual), (OM) $m per year 0.24 

Inverter and battery cell replacement in year 
14, (OI)

$m 2.64 

Recycling revenue in year 25, (OR) $m 0.47 

Degradation rate (per year), d % 0.75 
Discount rate, r % 8.0 
Time horizon, T years 25 
LCOE $/kWh 0.1200  

Table 4 
Derivatives of LCOE with respect to each of its seven parameters.  

i xi ∂LCOE
∂xi  

Equn # 

1 r 1 − k
E0

(
1 − kT+1

)
∑T

t=0

− tOt

(1 + r)t+1 +

[
k

E0(1 + r)
(
1 − kT+1

)

][

1 −
(T + 1)(1 − k)kT

1 − kT+1

]
∑T

t=0

Ot

(1 + r)t     

(13) 

2 d 1
E0

1
(1 + r)

(
1 − kT+1

)

[

1 −
(1 − k)(T + 1)kT

1 − kT+1

]
∑T

t=0

Ot

(1 + r)t     

(14) 

3 E0  
−

1 − k
E2

0
(
1 − kT+1

)
∑T

t=0

Ot

(1 + r)t     

(15) 

4 OI 1 − k
E0

(
1 − kT+1

)
1

(1 + r)14     

(16a) 

5 OR 1 − k
E0

(
1 − kT+1

)
1

(1 + r)25     

(16b) 

6 OM 
1 − k

E0
(
1 − kT+1

)
∑T

t=0

1
(1 + r)t =

1 − k
E0

(
1 − kT+1

)
(1 − qT+1)

1 − q
where q=

1
1 + r     

(16c) 

7 O0  1 − k
E0

(
1 − kT+1

)
(16d)  
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parameter, in which case DIM could be calculated from (6). In other 
cases, when the range of uncertainty is not known and it is reasonable to 
assume that the proportional changes are the same for each parameter, 
then (7), (9) and Table 7 would be appropriate. 

4. Discussion 

In Sections 2 and 3 of this paper, we have derived and validated an 
analytical approach to risk assessment for the economics of solar power 
projects. The impact of various model parameters on IRR is demon-
strated in Section 2 for a behind-the-meter project under net-metering. 
In Section 3, the impact of similar parameters on the LCOE of an off- 
grid project is demonstrated. Under a feed in tariff or a power pur-
chasing agreement, the approach would be the same as in Section 2, but 
with fewer parameters since those associated with uncertainty in future 
electricity prices would not be needed. 

The analytical approach is based on a first order approximation using 
first partial derivatives of IRR and LCOE with respect to their parameters 
(given in Tables 1 and 4), resulting in a linear relation to changes in 
those parameters, (5). HOMER [27], also gives an example in which the 
impact of parameter variations on LCOE is linear. Ignoring second and 
higher derivatives is validated in Tables 2 and 6, which show that, for 
some parameters, a first order approximation is exact and the average 
accuracy for the other parameters is within 0.875% for IRR and 0.0595% 
for LCOE. The analytical approach proposed in (5) can also evaluate the 
effect of interactions among multiple parameters. 

The benefit of the analytical approach compared to re-running the 
model is reduced processing requirements, which translates into 
improved response time for the user. This is particularly useful when a 
Monte Carlo simulation is required involving many values of a param-
eter following a given probability distribution. This paper has shown 
that the linear approximation of IRR and LCOE using first partial de-
rivatives is accurate to within a fraction of a percentage point. The 
probability distributions of IRR and LCOE can therefore be obtained 
from linear transformations of the probability distribution of the 
parameter with minimal processing requirements. 

The differential importance measure [22], is calculated from the first 
derivatives and is used to obtain a ranking of parameters to determine 
which are more/less important (i.e. have more/less impact on IRR and 
LCOE) when each parameter is varied by the same proportion. The 
differential importance measure is additive, which allows us to assess 
the importance of subsets of parameters. The ranking is very similar for 
IRR and LCOE, as shown in Tables 3 and 7 This finding supports the 
methodology based on first derivatives since IRR and LCOE are very 
different measures of economic viability and the analytical expressions 
for their first derivatives are also very different, see Tables 1 and 4. The 
differential importance measure has been applied in the past to dis-
counted cash flow analysis [23], but the present paper presents its first 
application to the IRR of a solar project. The authors of the present paper 
have not been able to find any application of the differential importance 
measure to LCOE so this paper presents its first application in that area. 

4.1. Commercial implementation of the analytical approach to risk 
assessment 

Many solar project developers use commercial software to assess the 
economic viability of their project. The method described in the present 
paper could be implemented in this software. The internal details of such 
software are often confidential; however, the user guides imply that risk 
analysis is currently implemented by re-running the model:  

• PVSyst [28], uses batch mode to run the model repeatedly with 
different parameter values. 

• System Advisor Model, SAM [29], provides “parametric and sto-
chastic modeling for analyses that investigate the impacts on model 
results of variations and uncertainty in assumptions” using “multiple 
simulations.”  

• HOMER [30], states “HOMER performs a separate optimization 
procedure for each specified value.”  

• REOpt [31], states “REopt can be used to run thousands of scenarios 
to evaluate the effects of varying specific inputs (e.g., technology 
costs, utility escalation rates, and other assumptions).” 

The analytical approach proposed in the present paper could there-
fore be implemented in commercial software to speed up response time 
for the user and reduce processing requirements. The extent to which 
response time is improved depends on the software used and on the 
specifics of individual projects and is therefore beyond the scope of this 
paper. 

4.2. Limitations and future work 

The analytical method of risk assessment developed in this paper has 
been validated for the economic analysis of solar projects with respect to 
the parameters involved in that analysis: costs, savings, energy yield, 

Table 6 
Comparison of LCOE from the analytical approach with LCOE from re-running the model, for ±20% changes in model parameters for an off-grid solar/battery project. 
The base value of LCOE is $0.1200/kWh.  

Parameter Base value Minus 20% Plus 20% 

Analytical 
Approach 

Re-running the 
model 

Proportional 
difference 

Analytical 
Approach 

Re-running the 
model 

Proportional 
difference 

O0 $24.15m 0.09874 0.09874 0% 0.14080 0.14080 0% 
OM $0.24m/yr 0.11735 0.11735 0% 0.12218 0.12218 0% 
OI $2.64m 0.11892 0.11892 0% 0.12061 0.12061 0% 
OR $0.47m 0.11980 0.11980 0% 0.11974 0.11974 0% 
d 0.75% 0.11830 0.11831 0.01% 0.12123 0.12124 0.01% 
r 8% 0.10762 0.10777 0.14% 0.13192 0.13204 0.09% 
E0 using (15) 21.14 GWh 0.14372 0.14971 4.00% 0.09581 0.09981 4.01% 
E0 using (18) 21.14 GWh 0.14971 0.14971 0% 0.09981 0.09981 0% 
LCOE $0.12/ 

kWh        

Table 7 
Differential importance measure indicating the sensitivity of LCOE to the same 
proportional change in each of its parameters.  

Parameters xi  Base value 
x0

i  

Differential importance measure 
DIMLCOE

i (x0)

Rank 

O0 $24.15m 1.516 2 
OM $0.24m 0.1759 4 
OI $2.64m 0.05642 6 
OR $0.47m 0.00431 7 
D 0.75% 0.1066 5 
R 8.0% 0.8848 3 
E0 21.144 GWh − 1.744 1  

A.-A. Guindon and D.J. Wright                                                                                                                                                                                                              



Renewable and Sustainable Energy Reviews 133 (2020) 110262

7

degradation rate and discount rate. It is not proposed to use this method 
for the engineering analysis involved in optimizing the design of the 
solar system, e.g. scheduling the power flow into and out of the battery 
and sizing the battery. Many constraints involved in such optimizations 
are linear [18,19], resulting in the optimal design potentially being a 
discontinuous function of its parameters. Such discontinuities are an 
inherent possibility in optimization over a feasible space that is not 
strictly convex. An approach based on partial derivatives is not therefore 
necessarily appropriate for engineering design, and the optimizations 
may need to be recalculated for a range of parameter values. 

Future work could investigate whether there are conditions under 
which discontinuities would not occur in practice so that an approach 
based on partial derivatives could be used. 

The present paper derives and validates the analytical risk assess-
ment methodology for solar electric power generation. It could also be 
derived and validated for other forms of renewable energy using pa-
rameterizations specific to each energy generation technology. 

5. Conclusions 

Risk analysis is important both for securing funding for individual 
solar projects and also for bundling multiple individual solar projects 
into tradable securities that can attract hundreds of millions of dollars 
from institutional investors. Commercial software is typically used to 
model the economic viability of solar projects and includes re-running 
the model for a range of parameter values in order to assess the risk of 
uncertainty in the value of those parameters. This paper provides an 
analytical approach which avoids the necessity of re-running the model, 
thus reducing processing requirements and improving response time to 
the user. These advantages are particularly valuable in the case of Monte 
Carlo simulations involving many values of multiple parameters. 

The analytical method derived in this paper is based on first order 
approximations to two measures of economic viability, Internal Rate of 
Return (IRR) and Levelized Cost of Electricity (LCOE), using partial 
derivatives of IRR and LCOE with respect to their parameters. The 
method is validated for 20% changes in parameter values on case ex-
amples for the IRR of a behind-the-meter project under net-metering and 
for the LCOE of an off-grid project. Compared to re-running the model, 
the analytical method is least accurate for the capital cost of the projects; 
however, this is only relevant at an early stage in project planning. Once 
contracts have been signed with a supplier and installer, the capital cost 
is known and is no longer a source of risk. The difference between re- 
running the model and the analytical method for 20% changes in the 
remaining parameters (degradation rate, rate of increase of future 
electricity prices, discount rate, energy yield, annual O&M costs, battery 
cell & inverter replacement costs and end-of-life recycling costs) is on 
average 0.875% for changes in IRR. For LCOE, the analytical method is 
exact with respect to changes in capital costs, O&M costs, battery cell 
and inverter replacement costs, recycling costs and energy yield costs. It 
is within 0.01% for a 20% change in the degradation rate and 0.14% for 
a 20% change in the discount rate. 

The assessment of risk using this new analytical approach is extended 
to calculate the Differential Importance Measure (DIM) which can be 
used when the proportional change is the same in each parameter to 
provide a ranking of their contribution to risk. The ranking is identical 
for IRR and for LCOE applied to the case examples used for validation in 
the present paper. 

The contribution of this paper is to provide the partial derivatives of 
IRR and LCOE with respect to a range of parameters and to use them to 
provide an analytical method of risk assessment that avoids the necessity 
of re-running models of solar economics for ranges of parameter values. 
This paper also presents the first time DIM has been applied to the IRR of 
a solar project and the first time it has been applied to LCOE. 

Author contributions 

Audrey-Anne Guindon contributed formal analysis of differential 
importance measures plus formal analysis and validation of IRR meth-
odology. David Wright contributed conceptualization, funding acquisi-
tion and formal analysis and validation of LCOE methodology. Both 
authors contributed to writing the draft and final version of the paper. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This research was supported by Social Sciences and Humanities 
Research Council, (SSHRC) Canada [grant number 892/2017/2060]. 
SSHRC played no role in study design; the collection, analysis and 
interpretation of data; writing of the report or the decision to submit the 
article for publication. 

References 

[1] IEC, IECRE – Renewable Energy. IEC system for certification to standards relating 
to equipment for use in renewable energy applications. 2020. https://www.iecre.or 
g/certification/iecstandards/. [Accessed 13 January 2020]. 

[2] Climate Bonds Initiative. Certification under the climate bonds standard. 2020. htt 
ps://www.climatebonds.net/certification. [Accessed 25 January 2020]. 

[3] Sustainalytics, Sustainable Finance Solutions. https://www.sustainalytics.com/ 
sustainable-finance. [Accessed 11 February 2020]. 

[4] Moodys, Research and Ratings. https://www.moodys.com/researchandratings. 
[Accessed 11 February 2020]. 

[5] Bustos F, Toledo A, Contreras J, Fuentes A. Sensitivity analysis of a photovoltaic 
solar plant in Chile. Renew Energy 2016;87:145–53. 

[6] Schinko T, Komendantova N. De-risking investment into concentrated solar power 
in North Africa: impacts on the costs of electricity generation. Renew Energy 2016; 
92:262–72. https://doi.org/10.1016/j.renene.2016.02.009. 

[7] Guedez R, Topel M, Conde I, Ferragut F, Callaba I, Spelling J, Hassar Z, Perez- 
Segarra CD, Laumert B. A methodology for determining optimum solar tower plant 
configurations and operating strategies to maximize profits based on hourly 
electricity market prices and tariffs. J Sol Energy 2016;138(2):021006. 12 pages 
Eng. 

[8] Del Fabbro B, Valentincic A, Gubina AF. An adequate required rate of return for 
grid-connected PV systems. Sol Energy 2016;132:73–83. 

[9] Darling SB, You F, Veselka T, Velosa A. Assumptions and the levelized cost of 
energy for photovoltaics. Energy Environ Sci 2011;4:3133–9. 

[10] Kebede KY. Viability study of grid-connected solar PV system in Ethiopia. Sustain 
Energy Technol Assess 2015;10:63–70. 

[11] Polo J, Tellez FM, Tapia C. Comparative analysis of long-term solar resource and 
CSP production for bankability. Renew Energy 2016;90:38–45. 

[12] Tomosk S, Haysom JE, Wright DJ. Quantifying economic risk in photovoltaic 
power projects. Renew Energy 2017;109:422–33. https://doi.org/10.1016/j. 
renene.2017.03.031. 

[13] Pearce JM, Alafita T. Securitization of residential solar photovoltaic assets: costs, 
risks and uncertainty. Energy Pol 2014;67:488–98. https://doi.org/10.1016/j. 
enpol.2013.12.045i. 

[14] Mendelsohn M, Lowder T, Rottman M, Borod R, Gabig N, Henne S, Caplin C, 
Notte Q. The solar access to public capital (SAPC) mock securitization project. 
Technical Report, NREL/TP-6A20-64347. December 2015. 

[15] Lowder T, Mendelsohn M, Speer B, Hill R. Continuing developments in PV risk 
management: strategies, solutions, and implications. National Renewable Energy 
Laboratory; 2013. http://www.nrel.gov/docs/fy13osti/57143.pdf. [Accessed 10 
January 2020]. 

[16] Okura M. Solar power generation and risk transfer systems. Int J Bus 2015;20(4): 
347–56. 

[17] Munoz JI, Bunn DW. Investment risk and return under renewable decarbonisation 
of a power market. Clim Pol 2013;13(S01):S87–105. https://doi.org/10.1080/ 
14693062.2012.750473. 

[18] Wright DJ, Ashwell J, Ashworth J, Badruddin S, Ghali M, Robertson-Gillis C. 
Impact of tariff structure on the economics of behind-the-meter solar microgrids, 
[submitted for publication, available upon request from dwright@uottawa.ca]. 

[19] Wright DJ, Badruddin S, Robertson-Gillis C. Micro-tracked CPV can Be cost 
competitive with PV in behind-the-meter applications with demand charges. Front 
Energy Res 2018;6:97. https://doi.org/10.3389/fenrg.2018.00097. 

[20] Fu R, Feldman D, Margolis R. U.S. Solar photovoltaic system cost benchmark: Q1. 
2018. NREL report # NREL/TP-6A20-72399. 

[21] Deceglie MG, Jordan DC, Nag A, Shinn A, Deline C. Fleet-scale energy-yield 
degradation analysis applied to hundreds of residential and nonresidential 

A.-A. Guindon and D.J. Wright                                                                                                                                                                                                              

https://www.iecre.org/certification/iecstandards/
https://www.iecre.org/certification/iecstandards/
https://www.climatebonds.net/certification
https://www.climatebonds.net/certification
https://www.sustainalytics.com/sustainable-finance
https://www.sustainalytics.com/sustainable-finance
https://www.moodys.com/researchandratings
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref5
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref5
https://doi.org/10.1016/j.renene.2016.02.009
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref7
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref7
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref7
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref7
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref7
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref8
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref8
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref9
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref9
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref10
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref10
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref11
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref11
https://doi.org/10.1016/j.renene.2017.03.031
https://doi.org/10.1016/j.renene.2017.03.031
https://doi.org/10.1016/j.enpol.2013.12.045i
https://doi.org/10.1016/j.enpol.2013.12.045i
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref14
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref14
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref14
http://www.nrel.gov/docs/fy13osti/57143.pdf
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref16
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref16
https://doi.org/10.1080/14693062.2012.750473
https://doi.org/10.1080/14693062.2012.750473
https://doi.org/10.3389/fenrg.2018.00097
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref20
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref20


Renewable and Sustainable Energy Reviews 133 (2020) 110262

8

photovoltaic systems. IEEE J Photovoltaics 2019;9(2):476–82. https://doi.org/ 
10.1109/JPHOTOV.2018.2884948. 

[22] Borgonovo E, Apostolakis GE. A new importance measure for risk-informed 
decision making. Reliab Eng Syst Saf 2001;72(2):193–212. 

[23] Percoco M, Borgonovo E. A note on the sensitivity analysis of the internal rate of 
return. Int J Prod Econ 2012;135:526–9. 

[24] National Renewable Energy Laboratory, Sandia National Laboratory. SunSpec 
alliance, and the SunShot national laboratory multiyear partnership. Best practices 
for operation and maintenance of photovoltaic and energy storage systems. NREL 
report #NREL/TP-7A40-73822. third ed. 2018. https://www.nrel.gov/docs/ 
fy19osti/73822.pdf. [Accessed 10 January 2020]. 

[25] HOMER Energy. http://www.homerenergy.com/. [Accessed 13 February 2020]. 
[26] Al Garni HZ, Mas’ud AA, Wright DJ, Design and economic assessment of PV-Wind- 

Battery systems in Saudi Arabia using HOMER, [submitted for publication, 
available upon request from dwright@uottawa.ca]. 

[27] HOMER. Why would I do a sensitivity analysis?. https://www.homerenergy.com/ 
products/pro/docs/latest/why_would_i_do_a_sensitivity_analysis.html. [Accessed 
15 January 2020]. 

[28] PVSyst. Batch mode - parameteric studies. 2020. https://www.pvsyst.com/help/. 
[Accessed 18 January 2020]. 

[29] Blair N, DiOrio N, Freeman J, Gilman P, Janzou S, Neises T, Wagner M. System 
Advisor model (SAM) general description (version 2017.9.5). National Renewable 
Energy Laboratory; 2018. NREL/TP-6A20-70414. 

[30] HOMER. Sensitivity variable. 2020. https://www.homerenergy.com/products/pr 
o/docs/latest/sensitivity_variable.html. [Accessed 18 January 2020]. 

[31] Cutler D, Olis D, Elgqvist E, Li X, Laws N, DiOrio N, Walker A, Anderson K. REopt: a 
platform for energy system integration and optimization. 2017. Technical Report 
#NREL/TP-7A40-70022. 

A.-A. Guindon and D.J. Wright                                                                                                                                                                                                              

https://doi.org/10.1109/JPHOTOV.2018.2884948
https://doi.org/10.1109/JPHOTOV.2018.2884948
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref22
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref22
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref23
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref23
https://www.nrel.gov/docs/fy19osti/73822.pdf
https://www.nrel.gov/docs/fy19osti/73822.pdf
http://www.homerenergy.com/
https://www.homerenergy.com/products/pro/docs/latest/why_would_i_do_a_sensitivity_analysis.html
https://www.homerenergy.com/products/pro/docs/latest/why_would_i_do_a_sensitivity_analysis.html
https://www.pvsyst.com/help/
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref29
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref29
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref29
https://www.homerenergy.com/products/pro/docs/latest/sensitivity_variable.html
https://www.homerenergy.com/products/pro/docs/latest/sensitivity_variable.html
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref31
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref31
http://refhub.elsevier.com/S1364-0321(20)30551-7/sref31

	Analytical approach to quantitative risk assessment for solar power projects
	1 Introduction
	2 Risk assessment for behind-the-meter solar projects
	2.1 Validation
	2.2 Differential importance measure

	3 Risk assessment for utility scale and off-grid solar projects
	3.1 Validation
	3.2 Differential importance measure

	4 Discussion
	4.1 Commercial implementation of the analytical approach to risk assessment
	4.2 Limitations and future work

	5 Conclusions
	Author contributions
	Declaration of competing interest
	Acknowledgement
	References


